Syntheses of Novel 25-Hydroxyvitamin D_{3} Haptens having Chemical Bridges at the C-11a Position ${ }^{1}$

Norihiro Kobayashi, Akihiko Hisada and Kazutake Shimada*
Faculty of Pharmaceutical Sciences, Kanazawa University, 13-1 Takara-machi, Kanazawa 920, Japan

Abstract

The serum or plasma levels of 25 -hydroxyvitamin $D_{3} \mathbf{1 a}$ is useful for the evaluation of vitamin D status in various clinical or nutritional disorders. To obtain antibodies to compound 1 a which are highly specific and useful for development of immunoassays, two novel haptenic derivatives, 11α-(3-carboxypropionyloxy)-25-hydroxyvitamin $D_{3} 2 a$ and 11α-(4-carboxybutyryloxy)-25-hydroxyvitamin $D_{3} 2 b$ were synthesized each in 21 steps from 11α-hydroxydehydroepiandrosterone 3.

The serum or plasma levels of 25 -hydroxyvitamin D_{3} $\left[25(\mathrm{OH}) \mathrm{D}_{3}, 1 \mathrm{a}\right]$ and $1 \alpha, 25$-dihydroxyvitamin $\mathrm{D}_{3}\left[1,25(\mathrm{OH})_{2^{-}}\right.$ $\left.\mathrm{D}_{3}, 1 \mathrm{~b}\right]$, which are a major circulating metabolite and the most potent form of vitamin $D_{3}\left(D_{3}, 1 c\right)$, respectively, are useful for the evaluation of vitamin D status in various clinical or nutritional disorders. ${ }^{2,3}$ The $25(\mathrm{OH}) \mathrm{D}_{3}$ and $1,25(\mathrm{OH})_{2} \mathrm{D}_{3}$ levels are now measured usually by competitive radioassays using serum vitamin D binding protein and intestine vitamin D receptor, respectively. ${ }^{4}$ However, both methods require tedious and time-consuming pretreatment of biological fluids to remove interfering substances.

Immunoassays using highly specific antibodies are therefore expected as an alternative methodology which is more simple and feasible for routine use. In recent years, a number of antibodies have been raised against the haptens linked to carrier proteins through C-3 or a position on the side chain, ${ }^{4}$ including those prepared in our laboratory. ${ }^{5}$ However, almost all the antibodies lacked sufficient specificity to omit or exceedingly simplify the pretreatment of the specimens in clinical application. It was anticipated that the use of the hapten-carrier conjugates exposing both the A-ring and side chain would provide antibodies having much higher specificity, the C-11 α position of the metabolites being an attractive coupling site with the carrier protein.

From these points of view we have undertaken the syntheses of the haptenic derivatives of the D_{3} metabolites having chemical bridges at their $\mathrm{C}-11 \alpha$ position. The present paper reports the syntheses of two novel haptenic derivatives of $25(\mathrm{OH}) \mathrm{D}_{3}$, namely 11α-(3-carboxypropionyloxy)- $25(\mathrm{OH}) \mathrm{D}_{3}$ 2a and $11 x$-(4-carboxybutyryloxy)- $25(\mathrm{OH}) \mathrm{D}_{3} \mathbf{2 b}$. The properties of the resulting antibodies raised against compound $\mathbf{2 b}$ are also described briefly.

Results

11α-Hydroxydehydroepiandrosterone 3 , obtained from dehydroepiandrosterone by microbial hydroxylation, ${ }^{6}$ was chosen as a suitable starting material. Initially, the 25 -hydroxy side chain having the necessary absolute configuration was stereoselectively constructed (Scheme 1). The Wittig reaction of ketone 3 with ethylidenetriphenylphosphorane followed by one-pot acetylation ${ }^{7}$ afforded the diene diacetate 4 in 96% yield. A ${ }^{1} \mathrm{H}$ NMR difference nuclear Overhauser effect (NOE) experiment on compound 4 indicated the proximity between $12 \beta-\mathrm{H}$ and $21-\mathrm{H}_{3}$, from which the $[17(20) Z]$-configuration of the compound was confirmed. The ene reaction of compound 4 with methyl propiolate and ethylaluminium dichloride ${ }^{7 a}$ gave the $(20 R)$-ester 5 in 91% yield. The formation of the corresponding (20S)-ester was not observed by HPLC or ${ }^{1} \mathrm{H}$

1a; $\mathbf{R}^{1}=\mathrm{H}, \mathrm{R}^{\mathbf{2}}=\mathrm{OH}$
1b; $R^{1}=R^{2}=O H$
1c; $R^{1}=R^{2}=H$

2a; $n=2$
2b; $n=3$

NMR spectroscopy. Subsequent catalytic hydrogenation of compound 5 with $\mathrm{Pt} / \mathrm{C}^{7}$ proceeded at the $\mathrm{C}-16$ and $\mathrm{C}-22$ double bonds selectively from the less hindered α-face, and thus the 5 ene ester 6 having the desired configuration $(17 \beta, 20 R$; the assignment is described below) could be obtained in 96% yield. Saponification of triester 6 gave the acid 7, which was then converted into the aldehyde 10 by a sequence of reactions: the usual methoxymethylation of acid 7 to give the fully protected compound 8 , reduction of ester 8 with lithium aluminium hydride $\left(\mathrm{LiAlH}_{4}\right)$ to afford the alcohol 9 , and oxidation of compound 9 with pyridinium chlorochromate (PCC) to provide aldehyde 10 in 74% overall yield from triester 6. Wittig reaction of compound 10 with isopropylidenetriphenylphosphorane ${ }^{8}$ gave the diene 11, whose methoxymethyl groups were subsequently removed under acidic conditions to give the diene diol 12 in 87% yield from aldehyde 10 . The introduction of the C-25 hydroxy group to compound 12 was effected by oxymercuriation and demercuriation ${ }^{9}$ to give the intermediate 13 having the required sidechain structure in satisfactory overall yield from the starting substance (49% from compound 3).

Scheme 1 Reagents: i, $\mathrm{EtPh}_{3} \mathrm{PBr}, \mathrm{Bu}^{t} \mathrm{OK}, \mathrm{THF}$; then $\mathrm{Ac}_{2} \mathrm{O}$, DMAP, pyridine; ii, $\mathrm{HC} \equiv \mathrm{CCO}_{2} \mathrm{Me}, \mathrm{EtAlCl}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$; iii, $\mathrm{H}_{2}, \mathrm{Pt} / \mathrm{C}, \mathrm{AcOEt}$; iv, KOH , $\mathrm{MeOH}-\mathrm{THF} ; \mathrm{v}, \mathrm{MeOCH} 2 \mathrm{Cl}, \mathrm{Pr}^{i}{ }_{2} \mathrm{NEt}$, DMF-THF; vi, LiAlH_{4}, THF; vii, $\mathrm{PCC}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$; viii, $\mathrm{Pr}^{\mathrm{i}} \mathrm{Ph}_{3} \mathrm{PI}, \mathrm{PhLi}, \mathrm{THF} ; \mathrm{ix}, \mathrm{HCl}, \mathrm{THF} ; \mathrm{x}, \mathrm{Hg}(\mathrm{OAc})_{2}, \mathrm{aq}$. THF; then $\mathrm{NaBH}_{4}, \mathrm{NaOH}: \mathrm{MOM}=\mathrm{CH}_{2} \mathrm{OMe}$.

In the next sequence of reactions, triol 13 was transformed into the 5,7 -diene triol derivative 18 in which the 3β-hydroxy group was selectively protected (Scheme 2). Compound 13 was subjected to selective silylation using a limited amount of tertbutyldimethylsilyl chloride (TBSCl) (1.2 mol equiv.), and the 3 -monosilyl ether 14 thus obtained in 91% yield was converted into its 11 -acetate 15 quantitatively by the usual acetylation. Allylic bromination of compound 15 with N bromosuccinimide (NBS) and a catalytic amount of $2,2^{\prime}$-azoisobutyronitrile (AIBN) followed by dehydrobromination with 2,4,6-collidine ($2,4,6$-trimethylpyridine) provided a mixture of several components containing the 5,7-diene derivative of acetate 15, together with the 4,6 -diene isomer. Since the separation of the dienes was not achieved by usual silica gel chromatography, the mixture was treated with 4 -phenyl-1,2,4-triazoline-3,5-dione (PTAD) ${ }^{10}$ to convert the 5,7-diene selectively into the Diels-Alder adduct 16, which was easily isolated by flash column chromatography, using silica gel, in 51% yield. Although the acetyl and PTAD groups in adduct 16 could be removed simultaneously by reaction with LiAlH_{4} in boiling tetrahydrofuran (THF), ${ }^{1,10}$ the desired compound 18 was obtained in only poor yield (34%). On the other hand, a two-step procedure, that is, deacetylation of compound 16 with potassium hydroxide followed by the removal of PTAD group from the diol 17 by refluxing in 1,1,3,3-tetramethylguanidine ${ }^{11}$ gave compound 18 in improved yield (85% from 16).

Irradiation of diene 18 with a high-pressure mercury lamp (400 W) through a Vycor filter and subsequent thermal isomerization at room temperature afforded a reaction mixture from which D_{3} derivative 19 was separated in 31% yield by preparative TLC (PLC). Treatment of compound 19 with succinic or glutaric anhydride gave the hemisuccinate 20 or the hemiglutarate 21, both of which were then subjected to desilylation with tetrabutylammonium fluoride (TBAF) to provide the desired haptens $2 \mathbf{a}$, \mathbf{b} in 32 and 58% yield respectively, from compound 19.

The stereochemistry of the introduced side chain was determined by transformation of the silyl ether 14 into 25 hydroxycholesterol (Scheme 3). Hence, compound 14 was
converted into the imidazolylthiocarbonyl derivative 22, which was then treated with tributyltin hydride to give the 11deoxygenated compound 23. ${ }^{12}$ Desilylation of compound 23 gave the diol 24 , whose m.p. and ${ }^{1} \mathrm{H}$ NMR data including the chemical shift of the C-21 methyl group [$\delta 0.93$; demonstrating its ($20 R$)-configuration] were in good agreement with those of 25 -hydroxycholesterol. ${ }^{13}$ These results led us to conclude that the haptens $\mathbf{2 a}, \mathbf{b}$ as well as the compounds 6-21 all possess the side chain with the natural $(17 \beta, 20 R)$-configuration.

All the novel compounds (2a, b and 4-22) exhibited satisfactory spectral data. It should be noted that, in the ${ }^{1} \mathrm{H}$ NMR spectra of the D_{3} analogues ($2 a, b$ and 19-21), we assigned the twin singlet-like signals due to the exocyclic methylene protons at $\mathrm{C}-19$, characterizing the vitamin D structure, as follows: the lower-field resonance to $19(E)$-H and the higher-field one to $19(Z)-\mathrm{H}$, that is, in the reverse order to the conventional assignment for D_{3} and D_{2} derivatives. ${ }^{14}$ This was based on the results of ${ }^{1} \mathrm{H}$ NMR difference NOE experiments performed on compounds 19 and $\mathbf{2 b}$: irradiation of the highfield twin signal enhanced the $7-\mathrm{H}$ signal as well as that of the other $19-\mathrm{H}$ signal, while no NOE was observed between the downfield one and 7-H (Fig. 1).

Discussion

We have succeeded in the syntheses of the novel haptens $\mathbf{2 a}, \mathbf{b}$, each in 21 steps, and in 1.9 and 3.4% overall yield, respectively, from compound 3. As far as we are aware, this is the first report of haptenic derivatives of vitamin D metabolites having the chemical bridge at a position other than at C-3 or on the side chain. ${ }^{4}$ The hapten 2b has already been coupled with bovine serum albumin by the active-ester method to give the haptencarrier conjugate, for which antibodies showing satisfactorily high titer $(>1: 40000)$, high affinity to $1 \mathrm{a}\left(K_{\mathrm{a}} 0.96-2.6 \times 10^{9}\right.$ $\mathrm{dm}^{3} \mathrm{~mol}^{-1}$), and suitable specificity in a radioimmunoassay. ${ }^{15}$ In the development of enzyme immunoassay (EIA), the use of an enzyme-labelled antigen having a bridge shorter than that used for antibody production (i.e., for linkage of hapten to carrier) has been shown to be advantageous in increasing the assay

Scheme 2 Reagents and conditions: i, TBSCl, imidazole, DMF; ii, $\mathrm{Ac}_{2} \mathrm{O}$, pyridine; iii, NBS, AIBN, hexane; iv, 2,4,6-collidine, xylene (mixed isomers); v , PTAD, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; vi, $\mathrm{KOH}, \mathrm{MeOH}-\mathrm{THF}$; vii, 1,1,3,3-tetramethylguanidine; viii, $h v, \mathrm{Et}_{2} \mathrm{O}$; ix, room temp., hexane-THF; x, succinic 20 or glutaric 21 anhydride; xi, TBAF, THF:TBS $=\mathrm{Bu}^{t} \mathrm{Me}_{2} \mathrm{Si}$.

Scheme 3 Reagents: i, TCDI, 1,2-dichloroethane; ii, $\mathrm{Bu}_{3}{ }_{3} \mathrm{SnH}$, toluene; iii, TBAF, THF
sensitivity. ${ }^{16}$ Therefore, a sensitive 'bridge heterologous' EIA could be established by the combination of the above mentioned antibody and the enzyme-labelled antigen prepared with the hapten 2a. Details of these results will be reported subsequently.

Experimental

M.p.s were recorded with a Yanagimoto micro melting point apparatus, and are uncorrected. Optical rotations were measured on a JASCO DIP-181 digital polarimeter, and $[\alpha]_{D^{-}}$ values are given in units of $10^{-1} \mathrm{deg} \mathrm{cm}{ }^{2} \mathrm{~g}^{-1}$. UV spectra were taken on a Union Giken SM-401 spectrophotometer for solutions in ethanol. The low- and high-resolution MS spectra [electron impact (EI) or fast-atom bombardment (FAB) ionization] were determined with a Hitachi M-80 and a JEOL JMS-DX-303 spectrometer, respectively. ${ }^{1} \mathrm{H}$ NMR spectra were obtained with a JEOL JNM-FX-100 (100 MHz), JNM-EX-270 (270 MHz) or JNM-GX-400 (400 MHz) spectrometer. CDCl_{3} was used as the solvent with tetramethylsilane as internal standard unless stated otherwise. J-Values are given in Hz . Column and flash column chromatography were carried out with Merck silica gel 60 ($70-230$ mesh) and Wakogel FC-40 ($20-40 \mu \mathrm{~m}$), respectively. PLC was carried out with Merck silica gel $60 \mathrm{~F}_{254}(0.5 \mathrm{~mm})$. All air-sensitive reactions were carried out under argon or nitrogen. The phrase 'dried and evaporated'
indicates drying with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ followed by evaporation of the solvents under reduced pressure.
[17(20)Z]-Pregna-5,17(20)-diene-3, 11α-diyl Diacetate* 4.Ethyltriphenylphosphonium bromide ($14.7 \mathrm{~g}, 39.6 \mathrm{mmol}$) was added portionwise to a stirred suspension of $\mathrm{Bu}^{t} \mathrm{OK}(4.87 \mathrm{~g}, 43.4$ mmol) in THF ($50 \mathrm{~cm}^{3}$) at room temperature. The resulting mixture was further stirred at $55^{\circ} \mathrm{C}$ (bath temperature) for 1 h . After addition of a solution of 11α-hydroxydehydroepiandrosterone $3(2.00 \mathrm{~g}, 6.58 \mathrm{mmol})$ in THF $\left(25 \mathrm{~cm}^{3}\right)$, the mixture was refluxed for 1 h and then cooled to room temperature. Pyridine (24 cm^{3}), $\mathrm{Ac}_{2} \mathrm{O}\left(12 \mathrm{~cm}^{3}\right)$ and 4-(dimethylamino)pyridine (DMAP) (80 mg) were added to the resulting solution, and the mixture was stirred at room temperature for 1 h . The resulting mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$, and the organic layer was washed (water; 5% aq. HCl ; water; 5% aq. NaHCO_{3}; and brine), dried and evaporated. The crude product was purified by flash column chromatography (hexane-AcOEt, 7:1) to give compound $4(2.52 \mathrm{~g}, 96 \%)$ as a solid, $\delta(400 \mathrm{MHz}) 0.96\left(3 \mathrm{H}, \mathrm{s}, 18-\mathrm{H}_{3}\right)$, $1.11\left(3 \mathrm{H}, \mathrm{s}, 19-\mathrm{H}_{3}\right), 1.63\left(3 \mathrm{H}, \mathrm{d}, J 7.0,21-\mathrm{H}_{3}\right), 2.03(6 \mathrm{H}, \mathrm{s}$, $2 \times \mathrm{OAc}), 2.63(1 \mathrm{H}$, dd, $J 11.9$ and $5.5,12 \beta-\mathrm{H}), 3.52(1 \mathrm{H}, \mathrm{m}$, $3 \alpha-\mathrm{H})$ and $4.92-5.48(3 \mathrm{H}, \mathrm{m}, 6-, 11 \beta-$ and $20-\mathrm{H}) ; m / z$ (EI) 340 $\left(\mathrm{M}^{+}-\mathrm{AcOH}, 93.5 \%\right), 280(340-\mathrm{AcOH}, 65.7), 265$ (59.3), 160 (73.5) and 145 (100).

[^0]

Fig. $1 \quad{ }^{1} \mathrm{H}$ NMR (normal and difference NOE) spectra of the vitamin D_{3} derivative 19: a, normal spectrum; b and c, difference NOE spectra on irradiation at $\delta 5.01$ and 4.77 , respectively

Methyl (22E)-3 $\beta, 11 \alpha$-Diacetoxychola-5,16,22-trien-24-oate 5.-Ethylaluminium dichloride ($1 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ solution in hexane; $28.7 \mathrm{~cm}^{3}$) was added dropwise to a solution of compound 4 $(2.30 \mathrm{~g}, 5.74 \mathrm{mmol})$ and methyl propiolate $\left(0.95 \mathrm{~cm}^{3}, 11.4 \mathrm{mmol}\right)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(25 \mathrm{~cm}^{3}\right)$, and the mixture was stirred at room temperature for 2.5 h . The resulting solution was poured into chilled 5% aq. NaHCO_{3}, and the mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The organic layer was washed (brine), dried and evaporated. The crude product was purified by flash column chromatography (hexane-AcOEt, 5:1) to give compound 5 $(2.53 \mathrm{~g}, 91 \%)$ as a solid, $\delta(100 \mathrm{MHz}) 0.84\left(3 \mathrm{H}, \mathrm{s}, 18-\mathrm{H}_{3}\right), 1.15$ ($3 \mathrm{H}, \mathrm{s}, 19-\mathrm{H}_{3}$), 2.02 and 2.03 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{OAc}$), 3.73 (3 H , s, $\left.\mathrm{CO}_{2} \mathrm{Me}\right), 4.59(1 \mathrm{H}, \mathrm{m}, 3 \alpha-\mathrm{H}), 5.16-5.60(3 \mathrm{H}, \mathrm{m}, 6-, 11 \beta$ - and 16-H), $5.77(1 \mathrm{H}, \mathrm{dd}, J 16$ and $1,23-\mathrm{H})$ and $6.93(1 \mathrm{H}, \mathrm{dd}, J 16$ and $8,22-\mathrm{H}$); m / z (EI) $484\left(\mathrm{M}^{+}, 0.06 \%\right), 424\left(\mathrm{M}^{+}-\mathrm{AcOH}\right.$, $91.6), 349$ (44.8), 251 (27.4) and 145 (100).

Methyl $3 \beta, 11 \alpha$-Diacetoxychol-5-en-24-oate 6.-A solution of compound $5(2.53 \mathrm{~g}, 5.22 \mathrm{mmol})$ in AcOEt $\left(250 \mathrm{~cm}^{3}\right)$ was stirred with $5 \% \mathrm{Pt} / \mathrm{C}(510 \mathrm{mg})$ at room temperature under hydrogen for 50 min . After removal of the catalyst by filtration, the solvent was evaporated off. The crude product obtained was purified by flash column chromatography (hexane-AcOEt, 8:1) to give compound $6\left(2.46 \mathrm{~g}, 96 \%\right.$) as needles, m.p. $139-142^{\circ} \mathrm{C}$ (from MeOH) $[\alpha]_{\mathrm{D}}^{19}-57.8$ ($c 1.03, \mathrm{CHCl}_{3}$) (Found: C, 71.15; H, 9.2. $\mathrm{C}_{29} \mathrm{H}_{44} \mathrm{O}_{6}$ requires $\left.\mathrm{C}, 71.28 ; \mathrm{H}, 9.08 \%\right) ; \delta(100 \mathrm{MHz}) 0.75(3 \mathrm{H}, \mathrm{s}$, $\left.18-\mathrm{H}_{3}\right), 0.90\left(3 \mathrm{H}, \mathrm{d}, J 5,21-\mathrm{H}_{3}\right), 1.01\left(3 \mathrm{H}, \mathrm{s}, 19-\mathrm{H}_{3}\right), 2.01$ and 2.03 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{OAc}), 3.66\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{Me}\right), 4.54(1 \mathrm{H}, \mathrm{m}, 3 \alpha$ H), $5.24(1 \mathrm{H}, \mathrm{m}, 11 \beta-\mathrm{H})$ and $5.42(1 \mathrm{H}$, br d, 6-H).
$3 \beta, 11 \alpha$-Dihydroxychol-5-en-24-oic Acid 7.-A solution of triester $6(2.46 \mathrm{~g}, 5.03 \mathrm{mmol})$ in THF ($50 \mathrm{~cm}^{3}$), $\mathrm{MeOH}\left(50 \mathrm{~cm}^{3}\right)$
and $30 \% \mathrm{KOH}\left(100 \mathrm{~cm}^{3}\right)$ was refluxed for 2.5 h . After removal of the organic solvent, the remaining aqueous solution was acidified with 10% aq. HCl . The resulting precipitate was collected, and washed with water to give crude compound 7 (1.95 g) as a solid, which was used without further purification. Recrystallization from MeOH gave analytically pure acid 7 as needles, m.p. 253.5-255 ${ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}^{15}-33.2\left[c 0.20\right.$, in $\mathrm{CHCl}_{3}-$ $\mathrm{MeOH}(1: 1)]$ (Found: $\mathrm{C}, 73.6 ; \mathrm{H}, 10.0 . \mathrm{C}_{24} \mathrm{H}_{38} \mathrm{O}_{4}$ requires C , $73.80 ; \mathrm{H}, 9.81 \%) ; \delta\left[100 \mathrm{MHz} ;\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 0.64\left(3 \mathrm{H}, \mathrm{s}, 18-\mathrm{H}_{3}\right)$, $0.90\left(3 \mathrm{H}, \mathrm{d}, J 5,21-\mathrm{H}_{3}\right), 1.05\left(3 \mathrm{H}, \mathrm{s}, 19-\mathrm{H}_{3}\right)$ and $5.25(1 \mathrm{H}$, br d, 6-H).

Methoxymethyl $3 \beta, 11 \alpha$-Bis(methoxymethoxy)chol-5-en-24oate 8.- $\operatorname{Pr}^{\mathrm{i}}{ }_{2} \mathrm{NEt}\left(5.0 \mathrm{~cm}^{3}, 29.4 \mathrm{mmol}\right)$ was added to a solution of crude acid $7(1.95 \mathrm{~g})$ in N, N-dimethylformamide (DMF; 15 cm^{3}) and THF ($27 \mathrm{~cm}^{3}$) at $0{ }^{\circ} \mathrm{C}$, and the mixture was stirred at room temperature for 30 min . Chloromethyl methyl ether (1.9 $\mathrm{cm}^{3}, 25.3 \mathrm{mmol}$) was then added to the solution, and the mixture was stirred at $60^{\circ} \mathrm{C}$ (bath temperature) for 4.5 h . The resulting solution was poured into water, and the mixture was neutralized with 5% aq. NaHCO_{3} and then extracted with AcOEt. The organic layer was washed (brine), dried and evaporated. The crude product was purified by flash column chromatography (hexane-AcOEt, 3:1) to give compound 8 (2.38 $\mathrm{g}, 90 \%$ from triester 6) as a solid, $\delta(100 \mathrm{MHz}) 0.69(3 \mathrm{H}, \mathrm{s}, 18-$ H_{3}), $0.96\left(3 \mathrm{H}, \mathrm{d}, J 6,21-\mathrm{H}_{3}\right), 1.13\left(3 \mathrm{H}, \mathrm{s}, 19-\mathrm{H}_{3}\right), 3.37(6 \mathrm{H}, \mathrm{s}$, $\left.2 \times \mathrm{OCH}_{2} \mathrm{OMe}\right), 3.46\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{OMe}\right), 3.88(1 \mathrm{H}, \mathrm{m}$, $11 \beta-\mathrm{H}), 4.68\left(4 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{OCH}_{2} \mathrm{OMe}\right), 5.22(2 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{OMe}\right)$ and $5.36(1 \mathrm{H}$, br d, $6-\mathrm{H})$.
$3 \beta, 11 \alpha$-Bis(methoxymethoxy)chol-5-en-24-ol 9.- $\mathrm{LiAlH}_{4}(863$ $\mathrm{mg}, 22.7 \mathrm{mmol})$ was added to a solution of ester $8(2.38 \mathrm{~g}, 4.55$ mmol) in THF ($50 \mathrm{~cm}^{3}$) at $0^{\circ} \mathrm{C}$. The resulting suspension was stirred at room temperature for 15 min , and quenched with 1 $\mathrm{mol} \mathrm{dm}{ }^{-3} \mathrm{NaOH}$. The mixture was extracted with AcOEt, and the organic layer was washed (brine), dried and evaporated. The crude product was purified by flash column chromatography (hexane-AcOEt, 3:2) to give compound $9(1.92 \mathrm{~g}, 91 \%$) as needles, m.p. $77.5-79{ }^{\circ} \mathrm{C}$ (from hexane- $\mathrm{Et}_{2} \mathrm{O}$); $[\alpha]_{\mathrm{D}}^{19}-30.5$ (c $0.84, \mathrm{CHCl}_{3}$) (Found: $\mathrm{C}, 72.2 ; \mathrm{H}, 10.9 . \mathrm{C}_{28} \mathrm{H}_{48} \mathrm{O}_{5}$ requires C , $72.37 ; \mathrm{H}, 10.41 \%$); $\delta(100 \mathrm{MHz}) 0.69\left(3 \mathrm{H}, \mathrm{s}, 18-\mathrm{H}_{3}\right), 0.96(3 \mathrm{H}, \mathrm{d}$, $\left.J 6,21-\mathrm{H}_{3}\right), 1.13\left(3 \mathrm{H}, \mathrm{s}, 19-\mathrm{H}_{3}\right), 3.37(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{OMe}), 3.90$ $(1 \mathrm{H}, \mathrm{m}, 11 \beta-\mathrm{H}), 4.68\left(4 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{OCH}_{2} \mathrm{O}\right)$ and $5.38(1 \mathrm{H}$, br d, 6-H).
$3 \beta, 11 \alpha$-Bis(methoxymethoxy)chol-5-en-24-al 10.-A solution of the alcohol $9(1.91 \mathrm{~g}, 4.11 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(20 \mathrm{~cm}^{3}\right)$ was added to a suspension of $\mathrm{PCC}(1.33 \mathrm{~g}, 6.17 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(60$ cm^{3}), and the mixture was stirred at room temperature for 5 h . After dilution with $\mathrm{Et}_{2} \mathrm{O}$, the resulting mixture was placed on a short column of silica gel $60(\sim 8 \mathrm{~g})$ and eluted with $\mathrm{Et}_{2} \mathrm{O}$. The crude product thus obtained was purified by flash column chromatography (hexane-AcOEt, 3:1) to give compound 10 $\left(1.71 \mathrm{~g}, 90 \%\right.$) as needles, m.p. $89-91^{\circ} \mathrm{C}$ (from hexane); $[\alpha]_{\mathrm{D}}^{19}$ -27.3 (c 0.10, CHCl_{3}) (Found: C, 72.5; $\mathrm{H}, 10.3 . \mathrm{C}_{28} \mathrm{H}_{46} \mathrm{O}_{5}$ requires $\mathrm{C}, 72.69 ; \mathrm{H}, 10.02 \%) ; \delta(100 \mathrm{MHz}) 0.69\left(3 \mathrm{H}, \mathrm{s}, 18-\mathrm{H}_{3}\right)$, $0.95(3 \mathrm{H}, \mathrm{d}, \mathrm{J}$ 6, 21-H3$), 1.13\left(3 \mathrm{H}, \mathrm{s}, 19-\mathrm{H}_{3}\right), 3.37(6 \mathrm{H}, \mathrm{s}$, $2 \times \mathrm{OMe}), 3.88(1 \mathrm{H}, \mathrm{m}, 11 \beta-\mathrm{H}), 4.68\left(4 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{OCH}_{2} \mathrm{O}\right)$, $5.41(1 \mathrm{H}, \mathrm{br} \mathrm{d}, 6-\mathrm{H})$ and $9.77(1 \mathrm{H}, \mathrm{t}, J 2, \mathrm{CHO})$.
$3 \beta, 11 \alpha$-Bis(methoxymethoxy)cholesta-5,24-diene 11.- PhLi [$2 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ solution in cyclohexane- $\mathrm{Et}_{2} \mathrm{O}(7: 3) ; 8.50 \mathrm{~cm}^{3}$] was added to a suspension of isopropyltriphenylphosphonium iodide ($7.17 \mathrm{~g}, 16.6 \mathrm{mmol}$) in THF ($100 \mathrm{~cm}^{3}$), and the mixture was stirred at room temperature for 30 min . A solution of aldehyde 10 ($1.71 \mathrm{~g}, 3.70 \mathrm{mmol}$) in THF ($30 \mathrm{~cm}^{3}$) was added to the suspension, and the resulting mixture was stirred at room temperature for 30 min , and was then quenched by addition of
water. The mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$ and the organic layer was washed (brine), dried and evaporated. The crude product was purified by flash column chromatography (hexane-AcOEt, 8:1) to give compound $11(1.75 \mathrm{~g}, 97 \%)$ as needles, m.p. $76-77^{\circ} \mathrm{C}$ (from hexane); $[\alpha]_{\mathrm{D}}^{20}-29.3$ (c 0.10, CHCl_{3}) (Found: $\mathrm{C}, 75.9 ; \mathrm{H}, 11.0 . \mathrm{C}_{31} \mathrm{H}_{52} \mathrm{O}_{4}$ requires $\mathrm{C}, 76.18$; $\mathrm{H}, 10.72 \%) ; \delta(100 \mathrm{MHz}) 0.69\left(3 \mathrm{H}, \mathrm{s}, 18-\mathrm{H}_{3}\right), 0.96(3 \mathrm{H}, \mathrm{d}, J 6,21-$ $\left.\mathrm{H}_{3}\right) 1.13\left(3 \mathrm{H}, \mathrm{s}, 19-\mathrm{H}_{3}\right), 1.60$ and 1.68 (each $3 \mathrm{H}, \mathrm{s}, 26$ - and $27-$ $\left.\mathrm{H}_{3}\right), 3.37(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{OMe}), 3.88(1 \mathrm{H}, \mathrm{m}, 11 \beta-\mathrm{H}), 4.07$ and 4.68 (each $2 \mathrm{H}, \mathrm{s}$, together $\left.\mathrm{OCH}_{2} \mathrm{O}\right), 5.08(1 \mathrm{H}, \mathrm{m}, 24-\mathrm{H})$ and $5.36(1$ H, br d, 6-H).

Cholesta-5,24-diene-3 $\beta, 11 \alpha$-diol 12.-A solution of diene 11 $(1.75 \mathrm{~g}, 3.58 \mathrm{mmol})$ in THF $\left(200 \mathrm{~cm}^{3}\right)$ and $6 \mathrm{~mol} \mathrm{dm}{ }^{-3} \mathrm{HCl}(40$ cm^{3}) was stirred at room temperature for 31 h . After neutralization with NaHCO_{3}, the mixture was extracted with AcOEt. The organic layer was washed (brine), dried and evaporated. The crude product was purified by flash column chromatography (hexane-AcOEt, 2:3) to give compound 12 $(1.29 \mathrm{~g}, 90 \%)$ as needles, m.p. $167-169{ }^{\circ} \mathrm{C}$ (from AcOEt); $[\alpha]_{\mathrm{D}}^{20}$ -41.7 ($c 0.10, \mathrm{CHCl}_{3}$) (Found: C, 80.4; H, 11.4. $\mathrm{C}_{27} \mathrm{H}_{44} \mathrm{O}_{2} \cdot 1 / 6$ $\mathrm{H}_{2} \mathrm{O}$ requires $\left.\mathrm{C}, 80.34 ; \mathrm{H}, 11.07 \%\right) ; \delta(100 \mathrm{MHz}) 0.70(3 \mathrm{H}$, $\left.\mathrm{s}, 18-\mathrm{H}_{3}\right), 0.95\left(3 \mathrm{H}, \mathrm{d}, J 5,21-\mathrm{H}_{3}\right), 1.17\left(3 \mathrm{H}, \mathrm{s}, 19-\mathrm{H}_{3}\right), 1.60$ and $1.68\left(\right.$ each $3 \mathrm{H}, \mathrm{s}, 26-$ and $\left.27-\mathrm{H}_{3}\right), 3.54(1 \mathrm{H}, \mathrm{m}, 3 \alpha-\mathrm{H}), 4.02(1 \mathrm{H}$, $\mathrm{m}, 11 \beta-\mathrm{H}), 5.04(1 \mathrm{H}$, br $\mathrm{t}, 24-\mathrm{H})$ and $5.40(1 \mathrm{H}$, br d, $6-\mathrm{H})$.

Cholest-5-ene- $3 \beta, 11 \alpha, 25$-triol 13.-An aqueous solution of $\mathrm{Hg}(\mathrm{OAc})_{2}\left(2.35 \mathrm{~g}, 7.37 \mathrm{mmol}\right.$ in $\left.10 \mathrm{~cm}^{3}\right)$ was added to a solution of diol $12(1.18 \mathrm{~g}, 2.95 \mathrm{mmol})$ in THF ($30 \mathrm{~cm}^{3}$) and the mixture was stirred at room temperature for 5 h . Then, $3 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ $\mathrm{NaOH}\left(25 \mathrm{~cm}^{3}\right)$ and $\mathrm{NaBH}_{4}\left(0.5 \mathrm{~mol} \mathrm{dm}{ }^{-3}\right.$ solution in 3 mol $\mathrm{dm}^{-3} \mathrm{NaOH} ; 25 \mathrm{~cm}^{3}$) were added to the resulting mixture, which was then stirred further at room temperature for 15 min . After addition of NaCl , the THF layer was separated and the aqueous layer was extracted with AcOEt. The AcOEt layer was washed (brine), combined with the THF layer, and the solvents were evaporated off. The crude product was purified by flash column chromatography $\left(\mathrm{CHCl}_{3}-\mathrm{MeOH}, 20: 1\right)$ to give compound $13\left(1.12 \mathrm{~g}, 91 \%\right.$) as needles, m.p. $194-195^{\circ} \mathrm{C}$ (from aq. $\mathrm{MeOH}) ;[\alpha]_{\mathrm{D}}^{20}-28.0\left[c 0.10, \mathrm{CHCl}_{3}-\mathrm{MeOH}(1: 1)\right]$ (Found: C , $75.6 ; \mathrm{H}, 11.2 . \mathrm{C}_{27} \mathrm{H}_{46} \mathrm{O}_{3} \cdot 1 / 2 \mathrm{H}_{2} \mathrm{O}$ requires $\mathrm{C}, 75.83 ; \mathrm{H}, 11.08 \%$); $\left.\delta(270 \mathrm{MHz}) ;{ }^{2} \mathrm{H}_{5}\right]$ pyridine $\left.+\mathrm{D}_{2} \mathrm{O}\right) 0.72\left(3 \mathrm{H}, \mathrm{s}, 18-\mathrm{H}_{3}\right), 0.97(3$ $\left.\mathrm{H}, \mathrm{d}, J 6.6,21-\mathrm{H}_{3}\right), 1.39\left(3 \mathrm{H}, \mathrm{s}, 19-\mathrm{H}_{3}\right), 1.45(6 \mathrm{H}, \mathrm{s}, 26-\mathrm{and} 27-$ $\left.\mathrm{H}_{3}\right), 3.92(1 \mathrm{H}, \mathrm{m}, 3 \alpha-\mathrm{H}), 4.30(1 \mathrm{H}, \mathrm{m}, 11 \beta-\mathrm{H})$ and $5.51(1 \mathrm{H}$, br d, 6-H).
3β-(tert-Butyldimethylsiloxy)cholest-5-ene-11 $\alpha, 25$-diol 14.-A mixture of triol $13(1.01 \mathrm{~g}, 2.41 \mathrm{mmol}), \mathrm{TBSCl}(436 \mathrm{mg}, 2.89$ mmol) and imidazole ($410 \mathrm{mg}, 6.02 \mathrm{mmol}$) in DMF ($15 \mathrm{~cm}^{3}$) was stirred at room temperature for 45 min . The mixture was diluted with AcOEt, washed (water), dried and evaporated. The crude product was purified by column chromatography (hexane-AcOEt, 2:1) to give compound $14(1.17 \mathrm{~g}, 91 \%$) as plates, m.p. $200-202{ }^{\circ} \mathrm{C}$ (from MeOH); $[\alpha]_{\mathrm{D}}{ }^{5}-23.5(c 0.20$, CHCl_{3}) (Found: $\mathrm{C}, 73.8 ; \mathrm{H}, 11.6 . \mathrm{C}_{33} \mathrm{H}_{60} \mathrm{O}_{3} \mathrm{Si} \cdot 1 / 4 \mathrm{H}_{2} \mathrm{O}$ requires $\mathrm{C}, 73.75 ; \mathrm{H}, 11.35 \%) ; \delta(100 \mathrm{MHz}) 0.06\left(6 \mathrm{H}, \mathrm{s} . \mathrm{SiMe}_{2}\right), 0.70(3 \mathrm{H}$, $\left.\mathrm{s}, 18-\mathrm{H}_{3}\right), 0.89\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiBu}{ }^{t}\right), 1.16\left(3 \mathrm{H}, \mathrm{s}, 19-\mathrm{H}_{3}\right), 1.21(6 \mathrm{H}, \mathrm{s}, 26-$ and $\left.27-\mathrm{H}_{3}\right), 3.48(1 \mathrm{H}, \mathrm{m}, 3 \alpha-\mathrm{H}), 4.02(1 \mathrm{H}, \mathrm{m}, 11 \beta-\mathrm{H})$ and 5.33 (1 H , br d, 6-H).
3β-(tert-Butyldimethylsiloxy)-25-hydroxycholest-5-en-11 α-yl Acetate 15.-A solution of diol $14(1.07 \mathrm{~g}, 2.01 \mathrm{mmol})$ in pyridine $\left(14 \mathrm{~cm}^{3}\right)-\mathrm{Ac}_{2} \mathrm{O}\left(7 \mathrm{~cm}^{3}\right)$ was stirred at room temperature for 5 h . A small amount of water was added to the resulting solution, which was stirred for a further 30 min . The mixture was then extracted with $\mathrm{Et}_{2} \mathrm{O}$, and the organic layer was washed (water; chilled 5% aq. HCl ; water, 5% aq. NaHCO_{3}; and brine), dried and evaporated. The crude product was
purified by column chromatography (hexane-AcOEt, 4:1) to give compound $15\left(1.12 \mathrm{~g}, 97 \%\right.$) as prisms, m.p. $149-151^{\circ} \mathrm{C}$ (from $\mathrm{MeOH}) ;[\alpha]_{\mathrm{D}}^{26}-36.9\left(c 0.32, \mathrm{CHCl}_{3}\right.$) (Found: C, 72.9; H, 10.9 . $\mathrm{C}_{35} \mathrm{H}_{62} \mathrm{O}_{4}$ Si requires $\left.\mathrm{C}, 73.11 ; \mathrm{H}, 10.87 \%\right) ; \delta(100 \mathrm{MHz}) 0.05(6$ $\mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{2}$), $0.75\left(3 \mathrm{H}, \mathrm{s}, 18-\mathrm{H}_{3}\right), 0.88\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiBu}^{t}\right), 1.08(3 \mathrm{H}, \mathrm{s}$, $\left.19-\mathrm{H}_{3}\right), 1.21\left(6 \mathrm{H}, \mathrm{s}, 26-\mathrm{and} 27-\mathrm{H}_{3}\right), 2.01(3 \mathrm{H}, \mathrm{s}, \mathrm{OAc}), 3.42(1 \mathrm{H}$, $\mathrm{m}, 3 \alpha-\mathrm{H})$ and $5.04-5.42(2 \mathrm{H}, \mathrm{m}, 6-\mathrm{and} 11 \beta-\mathrm{H})$.
11α-Acetoxy-3 β-(tert-butyldimethylsiloxy)-25-hydroxy-4'-phenyl-5,8-[1,2]epi $[1,2,4]$ triazolo- $5 \alpha, 8 \alpha$-cholest-6-ene- $3^{\prime}, 5^{\prime}-$ dione 16.-A mixture of the 5-ene $15(1.00 \mathrm{~g}, 1.74 \mathrm{mmol})$, NBS ($402 \mathrm{mg}, 2.26 \mathrm{mmol}$) and AIBN (20 mg) in hexane ($80 \mathrm{~cm}^{3}$) was refluxed for 30 min . After the mixture had cooled to room temperature, the resulting precipitate was filtered off. The filtrate was concentrated under reduced pressure, and the residue thus obtained was dissolved in xylene (mixed isomers) $\left(40 \mathrm{~cm}^{3}\right)$. After addition of $2,4,6$-collidine $\left(5.0 \mathrm{~cm}^{3}\right)$, the mixture was refluxed for 1 h . The resulting solution was diluted with AcOEt, washed (water; chilled 5% aq. HCl ; water; 5% aq. NaHCO_{3}; and brine), dried and evaporated. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(20 \mathrm{~cm}^{3}\right)$, and a solution of PTAD (0.2 mol dm^{-3} in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) was added dropwise to the solution until a faint red colour due to PTAD persisted. After additon of the PTAD, the mixture was stirred at room temperature for 1 h . The solvent was removed under reduced pressure, and the crude product thus obtained was purified by flash column chromatography (hexane-AcOEt, 2:1) to give compound 16 ($665 \mathrm{mg}, 51 \%$) as needles, m.p. 224-226 ${ }^{\circ} \mathrm{C}$ (from MeOH); $[\alpha]_{\mathrm{D}}^{15}$ $-63.5\left(c 0.10, \mathrm{CHCl}_{3}\right.$) (Found: $\mathrm{C}, 68.9 ; \mathrm{H}, 9.1 ; \mathrm{N}, 5.7$. $\mathrm{C}_{43} \mathrm{H}_{65} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{Si}$ requires $\mathrm{C}, 69.04 ; \mathrm{H}, 8.76 ; \mathrm{N}, 5.62 \%$) ; $\delta(100$ $\mathrm{MHz}) 0.08$ and 0.10 (each $3 \mathrm{H}, \mathrm{s}$, SiMe), $0.88\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiBu}^{t}\right), 1.20$ $\left(6 \mathrm{H}, \mathrm{s}, 26-\right.$ and $\left.27-\mathrm{H}_{3}\right), 2.04(3 \mathrm{H}, \mathrm{s}, \mathrm{OAc}), 3.12(1 \mathrm{H}, \mathrm{dd}, J 14$ and $6,9 \alpha-\mathrm{H}), 4.32(1 \mathrm{H}, \mathrm{m}, 3 \alpha-\mathrm{H}), 4.86(1 \mathrm{H}, \mathrm{m}, 11 \beta-\mathrm{H}), 6.26(2 \mathrm{H}$, $\mathrm{ABq}, 6-$ and $7-\mathrm{H})$ and 7.12-7.48 (5 H, m, Ph).
3β-(tert-Butyldimethylsiloxy)-1 $1 \alpha, 25$-dihydroxy-4'-phenyl-5,8[1,2]epi $[1,2,4]$ triazolo- $5 \alpha, 8 \alpha$-cholest-6-ene- $3^{\prime}, 5^{\prime}$-dione 17.-A solution of compound $16(468 \mathrm{mg}, 0.626 \mathrm{mmol})$ in a mixture of $\mathrm{MeOH}\left(20 \mathrm{~cm}^{3}\right)$, THF ($20 \mathrm{~cm}^{3}$) and 10% aq. $\mathrm{KOH}\left(10 \mathrm{~cm}^{3}\right)$ was stirred at room temperature for 1.5 h . The resulting mixture was extracted with AcOEt, and the organic layer was washed (water; then brine), dried and evaporated. The crude product was purified by flash column chromatography (hexane-AcOEt, 3:2) to give compound $17(423 \mathrm{mg}, 96 \%)$ as a foam, $\delta(100 \mathrm{MHz}) 0.08$ and 0.10 (each $3 \mathrm{H}, \mathrm{s}$, SiMe), $0.81\left(3 \mathrm{H}, \mathrm{s}, 18-\mathrm{H}_{3}\right), 0.89(9 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{SiBu}^{t}\right), 1.16\left(3 \mathrm{H}, \mathrm{s}, 19-\mathrm{H}_{3}\right), 1.21\left(6 \mathrm{H}, \mathrm{s}, 26-\mathrm{and} 27-\mathrm{H}_{3}\right), 3.06(1$ $\mathrm{H}, \mathrm{dd}, J 14$ and $6,9 \alpha-\mathrm{H}), 3.76(1 \mathrm{H}, \mathrm{m}, 3 \alpha-\mathrm{H}), 4.35(1 \mathrm{H}, \mathrm{m}, 11 \beta-$ $\mathrm{H}), 6.27(2 \mathrm{H}, \mathrm{ABq}, 6-\mathrm{and} 7-\mathrm{H})$ and $7.26-7.50(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$.

3 β-(tert-Butyldimethylsiloxy)cholesta-5,7-diene-11 $\alpha, 25$-diol 18.-A solution of adduct $17(373 \mathrm{mg}, 0.528 \mathrm{mmol})$ in $1,1,3,3-$ tetramethylguanidine $\left(10 \mathrm{~cm}^{3}\right)$ was refluxed for 2 h . The resulting solution was diluted with AcOEt, washed (water; chilled 5% aq. HCl ; water; 5% aq. NaHCO_{3}; and brine), dried and evaporated. The crude product was purified by flash column chromatography (hexane-AcOEt, 2:1) to give compound $18(249 \mathrm{mg}, 89 \%)$ as a pale yellow solid [Found: $\mathrm{M}^{+}(\mathrm{EI})$, $530.4159 . \mathrm{C}_{33} \mathrm{H}_{58} \mathrm{O}_{3} \mathrm{Si}$ requires $\left.M, 530.4152\right] ; \delta(100 \mathrm{MHz})$ $0.06\left(6 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{2}\right), 0.62\left(3 \mathrm{H}, \mathrm{s}, 18-\mathrm{H}_{3}\right), 0.89\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiBu}^{t}\right), 0.96$ $\left(3 \mathrm{H}, \mathrm{d}, J 6,21-\mathrm{H}_{3}\right), 1.10\left(3 \mathrm{H}, \mathrm{s}, 19-\mathrm{H}_{3}\right), 1.22(6 \mathrm{H}, \mathrm{s}, 26-$ and $27-$ $\left.\mathrm{H}_{3}\right), 3.54(1 \mathrm{H}, \mathrm{m}, 3 \alpha-\mathrm{H}), 4.16(1 \mathrm{H}, \mathrm{m}, 11 \beta-\mathrm{H})$ and $5.20-5.60(2$ $\mathrm{H}, \mathrm{m}, 6-$ and $7-\mathrm{H}) ; m / z(\mathrm{EI}) 530\left(\mathrm{M}^{+}, 50.0 \%\right), 455\left(\mathrm{M}^{+}-\mathrm{Bu}^{t}-\right.$ $\mathrm{H}_{2} \mathrm{O}, 23.2$), 380 (75.8), 365 (81.9), 362 (63.7), 251 (M^{+}- side chain $\left.-\mathrm{Bu}^{t} \mathrm{Me}_{2} \mathrm{SiOH}-\mathrm{H}_{2} \mathrm{O}, 47.7\right)$ and $225(100)$.
(5Z,7E)-(3S)-3-(tert-Butyldimethylsiloxy)-9,10-secocholesta-5,7,10(19)-triene-1 $1 \alpha, 25$-diol 19.-A solution of diene 18 (87.0 $\mathrm{mg}, 0.164 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}\left(400 \mathrm{~cm}^{3}\right)$ was irradiated
intermittently (for $30 \mathrm{~s}, 60 \mathrm{~s}$ and 30 s), with a 400 W highpressure mercury lamp through a Vycor filter, at $0^{\circ} \mathrm{C}$ whilst under argon bubbling. After removal of the solvent under reduced pressure, the residue was dissolved in a mixture of hexane ($40 \mathrm{~cm}^{3}$) and THF ($8 \mathrm{~cm}^{3}$) and stored in the dark at room temperature under argon for 7 days. The solvent was evaporated off and the crude product thus obtained was purified by PLC (hexane-AcOEt, 3:1, developed three times) to give compound 19 ($27.0 \mathrm{mg}, 31 \%$) as a foam [Found: M^{+}(EI), $530.4280 . \mathrm{C}_{33} \mathrm{H}_{58} \mathrm{O}_{3} \mathrm{Si}$ requires $M, 530.4152$]; $\lambda_{\text {max }} 265 \mathrm{~nm} ; \lambda_{\text {min }}$ $230 \mathrm{~nm} ; \delta(400 \mathrm{MHz}) 0.06$ and 0.07 (each $3 \mathrm{H}, \mathrm{s}$, SiMe), $0.57(3 \mathrm{H}$, s, $18-\mathrm{H}_{3}$), $0.89\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiBu}^{\mathrm{t}}\right), 0.97\left(3 \mathrm{H}, \mathrm{d}, J 6.1,21-\mathrm{H}_{3}\right), 1.21(6$ $\left.\mathrm{H}, \mathrm{s}, 26-\mathrm{and} 27-\mathrm{H}_{3}\right), 3.79-3.95(2 \mathrm{H}, \mathrm{m}, 3-$ and $11 \beta-\mathrm{H}), 4.77[1 \mathrm{H}$, br s, $19(Z)-\mathrm{H}], 5.01[1 \mathrm{H}, \mathrm{br} \mathrm{s}, 19(E)-\mathrm{H}], 6.07$ ($1 . \mathrm{H}, \mathrm{d}, J 11.1,7-$ H) and $6.17(1 \mathrm{H}, \mathrm{d}, J 11.1,6-\mathrm{H}) ; m / z(\mathrm{EI}) 530\left(\mathrm{M}^{+}, 7.79 \%\right), 513$ (55.1), 495 (35.1), $251\left(\mathrm{M}^{+}\right.$- side chain - $\mathrm{Bu}^{+} \mathrm{Me}_{2} \mathrm{SiOH}-$ $\mathrm{H}_{2} \mathrm{O}, 21.4$), 193 (100) and 118 (54.6).
(5Z,7E)-(3S)-3-(tert-Butyldimethylsiloxy)-25-hydroxy-9,10-secocholesta-5,7,10(19)-trien-11 $\alpha-y l$ 3-Carboxypropionate 20 .A mixture of compound $19(8.5 \mathrm{mg}, 16.0 \mu \mathrm{~mol})$ and succinic anhydride ($255 \mathrm{mg}, 2.55 \mathrm{mmol}$) in pyridine ($0.2 \mathrm{~cm}^{3}$) was stirred at room temperature for 4 days. A small amount of water was added to the mixture, which was then stirred for a further 1 h . The mixture was then extracted with AcOEt, and the organic layer was washed (water), dried and evaporated. The crude product was purified by PLC $\left(\mathrm{CHCl}_{3}-\mathrm{MeOH}, 15: 1\right)$ to give compound $20(4.7 \mathrm{mg}, 47 \%)$ as a pale yellow foam, $\lambda_{\max } 265 \mathrm{~nm}$; $\lambda_{\text {min }} 231 \mathrm{~nm} ; \delta(400 \mathrm{MHz}) 0.07$ and 0.08 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}$), 0.60 ($3 \mathrm{H}, \mathrm{s}, 18-\mathrm{H}_{3}$), 0.88 ($9 \mathrm{H}, \mathrm{s}, \mathrm{SiBu}{ }^{t}$), 0.94 ($3 \mathrm{H}, \mathrm{d}, J 5.9,21-\mathrm{H}_{3}$), $1.21\left(6 \mathrm{H}, \mathrm{s}, 26-\right.$ and $\left.27-\mathrm{H}_{3}\right), 2.64\left(4 \mathrm{H}\right.$, br s, $\left.\mathrm{CO}\left[\mathrm{CH}_{2}\right]_{2} \mathrm{CO}\right), 3.83$ ($1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 4.74[1 \mathrm{H}, \mathrm{br} \mathrm{s}, 19(Z)-\mathrm{H}], 4.94-5.07[2 \mathrm{H}, \mathrm{m}+\mathrm{br}$ $\mathrm{s}, 11 \beta$ - and $19(E)-\mathrm{H}]$ and $6.10(2 \mathrm{H}, \mathrm{ABq}, 6-$ and $7-\mathrm{H})$.
(5Z,7E)-(3S)-(tert-Butyldimethylsiloxy)-25-hydroxy-9,10-secocholesta-5,7,10(19)-trien-11 α-yl 4-Carboxybutyrate 21.-A mixture of compound $19(27.0 \mathrm{mg}, 50.8 \mu \mathrm{~mol})$ and glutaric anhydride ($870 \mathrm{mg}, 7.62 \mathrm{mmol}$) in pyridine $\left(0.5 \mathrm{~cm}^{3}\right.$) was stirred at room temperature for 4 days. The mixture was worked up as described for the homologue 20, and purified by PLC (hexaneAcOEt, 1:1, developed twice) to give compound 21 (26.0 mg , 79%) as a foam, $\lambda_{\text {max }} 265 \mathrm{~nm} ; \lambda_{\text {min }} 232 \mathrm{~nm} ; \delta(400 \mathrm{MHz}) 0.07$ and 0.08 (each $3 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}$), $0.61\left(3 \mathrm{H}, \mathrm{s}, 18-\mathrm{H}_{3}\right), 0.88\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiBu}^{t}\right)$, $0.94\left(3 \mathrm{H}, \mathrm{d}, J 5.9,21-\mathrm{H}_{3}\right), 1.21\left(6 \mathrm{H}, \mathrm{s}, 26-\mathrm{and} 27-\mathrm{H}_{3}\right), 3.83(1 \mathrm{H}$, $\mathrm{m}, 3-\mathrm{H}), 4.75$ [1 H, br s, $19(Z)-\mathrm{H}], 4.96-5.05[2 \mathrm{H}, \mathrm{m}+\mathrm{br} \mathrm{s}$, 11β - and $19(E)-\mathrm{H}]$ and $6.11(2 \mathrm{H}, \mathrm{ABq}, 6-$ and $7-\mathrm{H})$.
(5Z,7E)-(3S)-3,25-Dihydroxy-9,10-secocholesta-5,7,10(19)-trien-11 α-yl 3-Carboxypropionate $\mathbf{2 a}$.-A solution of compound $20(4.7 \mathrm{mg}, 7.46 \mu \mathrm{~mol})$ and TBAF (0.22 mmol) in THF (0.42 cm^{3}) was stirred at room temperature for 3 h . The resulting solution was diluted with AcOEt, washed (water; then brine), dried and evaporated. The crude product was purified by PLC (toluene- $\mathrm{EtOH}, 8: 1$, developed three times) to give compound 2a $(2.6 \mathrm{mg}, 68 \%)$ as an oil [Found: $(\mathrm{M}-\mathrm{H})^{-}$(FAB), 515.3380. $\mathrm{C}_{31} \mathrm{H}_{47} \mathrm{O}_{6}$ requires $\left.M, 515.3373\right]$; $\lambda_{\text {max }} 265 \mathrm{~nm} ; \lambda_{\text {min }} 230 \mathrm{~nm}$; $\delta(400 \mathrm{MHz}) 0.60\left(3 \mathrm{H}, \mathrm{s}, 18-\mathrm{H}_{3}\right), 0.94\left(3 \mathrm{H}, \mathrm{d}, J 5.9,21-\mathrm{H}_{3}\right), 1.22$ $\left(6 \mathrm{H}, \mathrm{s}, 26-\right.$ and $\left.27-\mathrm{H}_{3}\right), 3.96(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 4.79[1 \mathrm{H}, \mathrm{d}, J 2.4,19$ $(Z)-\mathrm{H}], 5.00(1 \mathrm{H}, \mathrm{m}, 11 \beta-\mathrm{H}), 5.04[1 \mathrm{H}$, br s, $19(E)-\mathrm{H}], 6.11(1$ $\mathrm{H}, \mathrm{d}, J 11.2,7-\mathrm{H})$ and $6.19(1 \mathrm{H}, \mathrm{d}, J 11.2,6-\mathrm{H})$.
(5Z,7E)-(3S)-3,25-Dihydroxy-9,10-secocholesta-5,7,10(19)-trien-11 $\alpha-y l$ 4-Carboxybutyrate $\mathbf{2 b}$.-A solution of compound $21(25.0 \mathrm{mg}, 38.7 \mu \mathrm{~mol})$ and TBAF (1.2 mmol) in THF ($2.2 \mathrm{~cm}^{3}$) was stirred at room temperature for 30 min . The mixture was worked up as described for compound 2a, and was then purified with PLC (AcOEt-MeOH, 20:1, developed twice) to give compound $\mathbf{2 b}(15.0 \mathrm{mg}, 73 \%)$ as a foam [Found: $(\mathrm{M}-\mathrm{H})^{-}$
(FAB) 529.3506. $\mathrm{C}_{32} \mathrm{H}_{49} \mathrm{O}_{6}$ requires $M, 529.3529$]; $\lambda_{\text {max }} 265 \mathrm{~nm}$; $\lambda_{\text {min }} 230 \mathrm{~nm} ; \delta(400 \mathrm{MHz}) 0.60\left(3 \mathrm{H}, \mathrm{s}, 18-\mathrm{H}_{3}\right), 0.94(3 \mathrm{H}, \mathrm{d}, J 5.4$, $\left.21-\mathrm{H}_{3}\right), 1.21\left(6 \mathrm{H}, \mathrm{s}, 26-\mathrm{and} 27-\mathrm{H}_{3}\right), 3.94(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 4.78[1$ $\mathrm{H}, \mathrm{d}, J 2.0,19(Z)-\mathrm{H}], 4.97(1 \mathrm{H}, \mathrm{m}, 11 \beta-\mathrm{H}), 5.04[1 \mathrm{H}, \mathrm{br} \mathrm{s}, 19$ (E)-H], $6.10(1 \mathrm{H}, \mathrm{d}, J 11.2,7-\mathrm{H})$ and $6.20(1 \mathrm{H}, \mathrm{d}, J 11.2,6-\mathrm{H})$.

O-[3ß-(tert-Butyldimethylsiloxy)-25-hydroxycholest-5-en$11 \alpha-y l]$ Imidazole-1-carbothioate 22.-A solution of diol 14 ($18.5 \mathrm{mg}, 34.7 \mu \mathrm{~mol}$) and $1,1^{\prime}$-thiocarbonyldiimidazole (TCDI) $(25.0 \mathrm{mg}, 0.140 \mathrm{mmol})$ in 1,2-dichloroethane $\left(1 \mathrm{~cm}^{3}\right)$ was refluxed for 2 h , and was then stirred at room temperature for 12 h. After further addition of TCDI (25.0 mg), the resulting mixture was refluxed again for 1 h . Removal of the solvent gave a crude product, which was purified by flash column chromatography (toluene-AcOEt, 2:1) to give compound $22(17.1 \mathrm{mg}$, 77%) as a solid, $\delta(100 \mathrm{MHz}) 0.04\left(6 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{2}\right), 0.80(3 \mathrm{H}, \mathrm{s}$, $\left.18-\mathrm{H}_{3}\right), 0.87\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiBu}^{t}\right), 1.16\left(3 \mathrm{H}, \mathrm{s}, 19-\mathrm{H}_{3}\right), 1.20(6 \mathrm{H}, \mathrm{s}, 26-$ and $\left.27-\mathrm{H}_{3}\right), 3.41(1 \mathrm{H}, \mathrm{m}, 3 \alpha-\mathrm{H}), 5.37(1 \mathrm{H}$, br d, $6-\mathrm{H}), 6.00(1 \mathrm{H}$, $\mathrm{m}, 11 \beta-\mathrm{H}$) and 7.04, 7.64 and 8.31 (each $1 \mathrm{H}, \mathrm{m}$, imidazolyl H).
3β-(tert-Butyldimethylsiloxy)cholest-5-en-25-ol 23.-A solution of ester $22(17.1 \mathrm{mg}, 27.8 \mu \mathrm{~mol})$ in toluene $\left(1 \mathrm{~cm}^{3}\right)$ was added dropwise during 20 min to a refluxing solution of $\mathrm{Bu}_{3} \mathrm{SnH}(0.128$ $\mathrm{cm}^{3}, 0.460 \mathrm{mmol}$) in toluene ($1 \mathrm{~cm}^{3}$). The resulting mixture was then refluxed for 1 h . Removal of the solvent gave a crude product, which was purified by flash column chromatography (hexaneAcOEt, 8:1) to give the title compound $23(11.3 \mathrm{mg}, 82 \%)$ as a solid, $\delta(100 \mathrm{MHz}) 0.06\left(6 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}_{2}\right), 0.68\left(3 \mathrm{H}, \mathrm{s}, 18-\mathrm{H}_{3}\right), 0.89$ $\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiBu}^{t}\right), 1.00\left(3 \mathrm{H}, \mathrm{s}, 19-\mathrm{H}_{3}\right), 1.21\left(6 \mathrm{H}, \mathrm{s}, 26-\mathrm{and} 27-\mathrm{H}_{3}\right)$, $3.44(1 \mathrm{H}, \mathrm{m}, 3 \alpha-\mathrm{H})$ and $5.24(1 \mathrm{H}, \mathrm{br} \mathrm{d}, 6-\mathrm{H})$.

Cholest-5-ene-3ß,25-diol 24.-A solution of compound 23 $(10.5 \mathrm{mg}, 20.3 \mu \mathrm{~mol})$ and TBAF $(0.2 \mathrm{mmol})$ in THF $\left(0.4 \mathrm{~cm}^{3}\right)$ was stirred at room temperature for 5 h . The resulting solution was diluted with AcOEt, washed (water; then brine), dried and evaporated. The crude product was purified by PLC (hexaneAcOEt, 2:1) to give the diol $24(6.1 \mathrm{mg}, 75 \%)$ as needles, m.p. $181.5-183.5^{\circ} \mathrm{C}$ (from MeOH) (lit., $\left.{ }^{13 a} 179-181{ }^{\circ} \mathrm{C}\right) ; \delta(100 \mathrm{MHz})$ $0.68\left(3 \mathrm{H}, \mathrm{s}, 18-\mathrm{H}_{3}\right), 0.93\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 6,21-\mathrm{H}_{3}\right), 1.01\left(3 \mathrm{H}, \mathrm{s}, 19-\mathrm{H}_{3}\right)$, $1.21\left(6 \mathrm{H}, \mathrm{s}, 26-\right.$ and $\left.27-\mathrm{H}_{3}\right), 3.48(1 \mathrm{H}, \mathrm{m}, 3 \alpha-\mathrm{H})$ and $5.30(1 \mathrm{H}$, br d, 6-H).

Acknowledgements

Part of this work was supported by grants from the Hokuriku Industry Advancement and the Ministry of Education, Science and Culture of Japan, which are gratefully acknowledged. The authors thank Drs. N. Kubodera and Y. Nishii of Chugai Pharmaceutical Co. (Tokyo, Japan) for providing the starting substance and their helpful suggestions. Our thanks are also due to Taiho Pharmaceutical Co. (Tokyo, Japan) for measuring the FABMS spectra.

References

1 Part of this work was reported as a preliminary communication: \mathbf{N}. Kobayashi, A. Hisada and K. Shimada, Chem. Ind. (London), 1990, 803.

2 E. B. Mawer, Clin. Endocrinol. Metab., 1980, 9, 63.
3 R. Bouillon, J. Steroid Biochem., 1983, 19, 921.
4 C. E. Porteous, R. D. Coldwell, D. J. H. Trafford and H. L. J. Makin, J. Steroid Biochem., 1987, 28, 785 and references therein.

5 N. Kobayashi, K. Ueda, J. Kitahori and K. Shimada, Steroids, 1992, 57, 488.
6 A. M. Bell, J. W. Browne, W. A. Denny, E. R. H. Jones, A. Kasal and G. D. Meakins, J. Chem. Soc., Perkin Trans. 1, 1972, 2930.

7 (a) A. D. Batcho, D. E. Berger and M. R. Uskoković, J. Am. Chem. Soc., 1981, 103, 1293; (b) A. D. Batcho, D. E. Berger, S. G. Davoust, P. M. Wovkulich and M. R. Uskoković, Helv. Chim. Acta, 1981, 64, 1682.

8 E. G. Baggiolini, J. A. Iacobelli, B. M. Hennessy and M. R. Uskoković, J. Am. Chem. Soc., 1982, 104, 2945.
9 M. Morisaki, J. Rubio-Lightbourn and N. Ikekawa, Chem. Pharm. Bull., 1973, 21, 457.
10 C. Kaneko, A. Sugimoto, Y. Eguchi, S. Yamada and M. Ishikawa, Tetrahedron, 1974, 30, 2701.
11 M. Anastasia and M. Derossi, J. Chem. Soc., Chem. Commun., 1979, 164.

12 J. R. Rasmussen, C. J. Slinger, R. J. Kordish and D. D. NewmanEvans, J. Org. Chem., 1981, 46, 4843.
13 (a) T. A. Narwid, K. E. Cooney and M. R. Uskoković, Helv. Chim. Acta, 1974, 57, 771; (b) M. M. Midland and Y. C. Kwon, Tetrahedron Lett., 1982, 23, 2077.
14 G. N. La Mar and D. L. Budd, J. Am. Chem. Soc., 1974, 96, 7317; B. Helmer, H. K. Schnoes and H. F. DeLuca, Arch. Biochem. Biophys.,

1985, 241, 608; N. J. Koszewski, T. A. Reinhardt, D. C. Beitz, J. L. Napoli, E. G. Baggiolini, M. R. Uskoković and R. L. Horst, Anal. Biochem., 1987, 162, 446.
15 N. Kobayashi, A. Hisada and K. Shimada, submitted for publication in J. Steriod Biochem. Mol. Biol.
16 H. Hosoda, N. Kobayashi, N. Ishii and T. Nambara, Chem. Pharm. Bull., 1986, 34, 2105.
17 IUPAC-IUB Joint Commission on Biochemical Nomenclature, Eur. J. Biochem., 1989, 186, 429.

Paper 2/04584B
Received 26th August 1992
Accepted 7th September 1992

[^0]: * Nomenclature according to ref. 17.

